Economic optimum of roughage share in the ration

Nicolaj I. Nielsen, R&D NorFor & SEGES

NorFor advisor workshop, September 2017, Holland

Nordic Feed Evaluation System

Den Europæiske Landbrugsfond for Udvikling af Landdistrikterne: Danmark og Europa investerer i landdistrikterne

Se EU-Kommissionen, Den Europæiske Landbrugsfond for Udvikling af Landdistrikterne

Introduction

- High fluctuations in milk price and protein supplements when you produce milk to an export market
- Should we always feed the same energy/nutrients or should we change inputs ?
- Today NorFor is minimizing costs within constrains
- Constrains are not "price-sensitive"
- Optimizing on MilkMinusFeed demands responsefunctions => how much do we get for AAT, FA & MJ ?

HENRIK SHOWED A POSITIVE RELATIONSHIP BETWEEN CONC-SHARE AND ECM-YIELD....

Relationship between roughage share and profit

Danish_Benchmark_2016; 180 herds, conventionel, large dairy breed Cows & young stock, gain; std. roughage price

Relationship between roughage share and profit

Danish_Benchmark_2016; 180 herds, conventionel, large dairy breed Cows & young stock, gain; std. roughage price

Relationship between roughage share and profit Organic

Danish_Benchmark_2016; 23 herds, organic, large dairy breed

Relationship between roughage share and profit Jersey

Danish_Benchmark_2016; 55 herds, conventionel

Feed efficiency explains profit

Danish_Benchmark_2016; 180 herds, conventionel, large dairy breed

Apparently roughage share does not matter a lot... but what if we go within herd ?

Response to energy on herd level

(n=8543 OFCs & 453 herds)

Response to energy on herd level

(n=8543 OFCs & 453 herds)

Test on farm

NorFor model for calculation of energy level applied on farm

- ~ 200 DH cows, TMR1
- Conventional dairy herd, 2 daily milkings
- ~11.000 kg ECM/cow/year
- Maize, grass & WCB silage
- Concentrates: SBM, RSC, SBP, molasses, sat. fat & own wheat+barley
- Daily registrations of feed + left overs + milk

Inputs used at herd_TJ

Prices

- Milk: 0,30 eurocents/kg ECM
- Gain: 2,4 euros/kg SW
- Roughage (2,0 eurocents/MJ)
- Concentrate (3,4 eurocents /MJ)
- NorFor model suggest ≈153 MJ/cow, i.e. a reduction in energy/concentrate

What does the farmer want ?

- The actual energy intake is ~160 MJ/cow
- Farmer: OK to decrease conc-share (and loose milk) if I can make more money!
- New ration contains 4% less concentrate (~1 kg/cow)
- Conc-share decreased from 49 to 45 % of DM

Results

		Before	New feed ration
Roughage share	% of DM	51	55
Feed intake	kg DM/d	23,2	23,1
Energy intake	MJ NEL/d	155	156
Crude protein	g/kg DM	174	171
Feed costs	dkr/d	30,7	29,0

Results

		Before	New feed ration
Roughage share	% of DM	51	55
Feed intake	kg DM/d	23,2	23,1
Energy intake	MJ NEL/d	155	156
Crude protein	g/kg DM	174	171
Feed costs	dkr/d	30,7	29,0
DIM		181	188
1. parity share	%	42	43
ECM yield	kg/d	34,0	33,7
Milk minus feed	dkr/d	37,30	38,40

Conclusion

- Roughage share between 50% and 70% seems to be of less importance for the profit looking across herds
- What really drives profit is feed efficiency
- However, within farm roughage share can be important for tuning/increasing "milk minus feed"
- New MMF-model for NorFor developed

Responses to nutrients

Is glucose the driver for milk production in early lactation?

Early lactation:

- mobilization from body reserves
 glycogenic status in blood decreases
 risk of ketosis/fatty liver

Nordic Feed Evaluation System Response to glucose / by pass starch

Nordic Feed Evaluation System

Response to starch

Figur 3.1: Mælkeydelse som funktion af stivelseskoncentration i foderrationer med fast (---) grovfoder/kraftfoder-forhold fodret til malkekøer.

Nordic Feed Evaluation System

Hansen & Billing, 2015

..... could it be that cows lack amino acids (not glucose) available for absorption in the small intestine?

Feeding the same TMR for fresh cows

Trials with increased AAT to fresh cows

Nordic Feed Evaluation System

Data for response analysis

- Protein trials with different protein levels & sources
- Mainly soybean- and rapeseed meal
- Swedish, Norwegian, Finnish, Danish, British & US trials
- Silages: grass, clovergrass, alfalfa, maize
- All diets were calculated according to NorFor in order to obtain energy and nutrient supply
- Final dataset: 32 trials & 87 treatment means

Variation in nutrients

Variable	Ν	Avg	Std Dev	Min	Max	10th Pctl	90th Pctl
g AAT/kg DM	87	93	12	63	121	76	107
g AAT/MJ NEL	87	15.5	2.7	7.5	23.8	12.3	18.5
MJ NEL/kg DM	87	6.64	0.65	5.01	8.38	5.94	7.59
g PBV/kg DM	87	32	16	10	81	14	58
g Fatty acids/kg DM	87	28	5.9	18	55	20	32
g (ST+SU)/kg DM	87	276	92	109	439	161	405

Variation in production

Variable	N	Mean	Std Dev	Min	Max	10th Pctl	90th Pctl
ECM, kg/d	87	29.0	5.7	12.6	39.9	20.8	35.1
Milk, kg/d	87	29.5	6.7	13.1	43.7	23.2	38.3
MPY, g/d	87	946	202	422	1371	710	1183
DIM	87	130	54	49	273	63	192

Breeds: HOL, RED & NRF Mainly older cows

Plot of raw data - ECM

RAPE SEED MEAL HAS REPLACED SOY BEAN MEAL WHEN PRODUCING MILK BASED ON NON-GM FEED

	Jersey	(n=26)	Large breed (n=63)		
(kg DM/day)	Before	After	Before	After	
Rape seed products	2,79	3,44	2,08	3,15	
- Rape seed meal	0,15	0,80	0,26	1,02	
Soy bean meal	0,61	0,14	0,82	0,10	

FEEDING CONTROLS INDICATES NO CHANGE IN ECM AS RSM REPLACES SBM

	Jersey	(n=26)	Large breed (n=63)		
	Before	After	Before	After	
CP (g pr kg DM)	171	169	169	167	
AAT (g pr MJ)	16,9	16,5	16,1	15,6	
PBV (g pr kg DM)	13	14	20	21	
FA (g pr kg DM)	35	37	32	33	
NDF (g pr kg DM)	324	320	329	319	
Energy eff. (%)	103	103	100	99	
Conc. share (%)	41	42	41	41	
ECM (kg/day)	29,9	30,0	32,2	32,4	

COMMERCIAL NON-GM HERDS SEEMS TO CONFIRM UNIVERSITY TRIALS

 Internationale studier viser at rapsskrå bidrager med unedbrudt foderprotein og aminosyrer til absorption i tarmen på linje med sojaskrå

Conclusion

- AAT increases milk yield in <u>older cows in early</u>
 <u>lactation</u>
- Response to AAT for TMR-feeding is limited
- Increasing starch shows no clear response
- We have to look into if the AAT-value in SBM is over-rated relative to RSM

